Role of beta1 and beta3 integrins in human smooth muscle cell adhesion to and contraction of fibrin clots in vitro.
نویسندگان
چکیده
The degree of lumen narrowing in advanced lesions correlates poorly with the amount of intimal mass accumulated in the atherosclerotic plaque. As an alternate mechanism of stenosis, we propose that human smooth muscle cells bind to fibrin deposited in the matrix and exert contractile forces to cause a narrowing of the lumen. In the present study we demonstrated in vitro that human newborn aortic smooth muscle cell lines can contract and adhere to fibrin clots composed of either fibronectin-depleted plasma ("plasma") or recombinant fibrin. By using neutralizing antibodies and RGD peptides, we showed that members of the integrin family mediated the interaction between human newborn smooth muscle cells and fibrin. Neutralizing antibodies against the integrin alphavbeta3 (c7E3 Fab and LM609) did not inhibit either plasma clot contraction or recombinant fibrin clot contraction by human newborn smooth muscle cells. In contrast, antibodies against alpha5, beta1, and alpha5/beta1 inhibited contraction of clots composed of either plasma or recombinant fibrin. Anti-alphavbeta3, anti-alphav, anti-alpha5, anti-beta1, and anti-alpha5beta1 antibodies inhibited human newborn smooth muscle cell adhesion to plasma clots; however, only anti-alpha5, anti-beta1, and anti-alpha5beta1 antibodies significantly inhibited adhesion to recombinant fibrin. While the linear RGD peptides had no effect, the cyclic peptide penRGD inhibited adhesion to plasma clots and recombinant fibrin. However, it did not block contraction of recombinant fibrin clots. These results suggest that during the interaction of human newborn smooth muscle cell lines with fibrin, alpha5beta1 plays a significant role. This interaction is of potential interest as a target for efforts to block vascular contraction.
منابع مشابه
Beta3-integrins rather than beta1-integrins dominate integrin-matrix interactions involved in postinjury smooth muscle cell migration.
BACKGROUND Smooth muscle cell (SMC) migration is a vital component in the response of the arterial wall to revascularization injury. Cell surface integrin-extracellular matrix interactions are essential for cell migration. SMCs express both beta1- and beta3-integrins. In this study, we examined the relative functional roles of beta1- and beta3-integrin-matrix interactions in postinjury SMC migr...
متن کاملMechanisms of hepatocyte growth factor-mediated vascular smooth muscle cell migration.
The migration of vascular smooth muscle cells (SMCs) from the media into the neointima and their subsequent proliferation is important in the pathogenesis of atherosclerosis. This process is regulated by multiple factors, including growth factors, and involves changes in the interaction of SMCs with the extracellular matrix and in intracellular signaling cascades that regulate cell movement. We...
متن کاملIntegrin profile and in vivo homing of human smooth muscle progenitor cells.
BACKGROUND Recently, we identified circulating smooth muscle progenitor cells (SPCs) in human peripheral blood. The integrin profile of such progenitors is currently unknown and may affect their in vivo homing characteristics. In this study, we determined the integrin profile of vascular progenitors and SPC adhesion to extracellular matrix (ECM) proteins in vitro and in vivo. METHODS AND RESU...
متن کاملA Role for Caveolin and the Urokinase Receptor in Integrin-mediated Adhesion and Signaling
The assembly of signaling molecules surrounding the integrin family of adhesion receptors remains poorly understood. Recently, the membrane protein caveolin was found in complexes with beta1 integrins. Caveolin binds cholesterol and several signaling molecules potentially linked to integrin function, e.g., Src family kinases, although caveolin has not been directly implicated in integrin-depend...
متن کاملEffects of Bunium persicum (Boiss.) Essential Oil on the Contractile Responses of Smooth Muscle (An in vitro Study)
Bunium persicum (Boiss.) is an economically important medicinal plant growing wild in arid regions in Iran. The essential oil of B. persicum (EOBP) was extracted using hydrodistillation. A total of eighteen compounds, representing 96.14 % of the oil was identified by gas chromatography/mass spectrometry (GC/MS).The main compounds were cuminaldehyde (23.04 %), gamma-terpinene (14.48 %), trans-3...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 83 3 شماره
صفحات -
تاریخ انتشار 1998